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ALGORITHM OF AUTOMATIC DETECTION AND ANALYSIS OF 
NON-EVOLUTIONARY CHANGES IN ORBITAL MOTION OF 

GEOCENTRIC OBJECTS 

Sergey Kamensky*, Andrey Tuchin †, Victor Stepanyants‡, Kyle T. Alfriend§ 

The goal of this work is developing the methods and algorithms for automatic 

detection and analysis of non-evolutionary changes in orbital motion of geocen-

tric objects caused by maneuvers and other events (but not by natural perturba-

tions). The task is formulated for three kinds of non-evolutionary changes, 

namely the single impulse maneuver, two impulses maneuver and small con-

tinuous thrust. The methods and algorithms are developed. Examples of the al-

gorithm work are given. 

INTRODUCTION 

Automatic determination and adequate characterization of the maneuvers performed by space-

craft in near-Earth orbits is a significant component of the general problem of tracking Earth sat-

ellites and catalog maintenance. This paper presents the techniques and algorithms for the detec-

tion and analysis of non-evolutionary changes of orbital motion of satellites resulting from ma-

neuvers. The problem is formulated for three types of non-evolutionary change of orbital parame-

ters: one burn maneuvers, two burn maneuvers and low thrust maneuvers. 

Identification of the non-evolutionary change of the orbit requires rather good knowledge of 

the satellite orbital motion, which can be acquired by processing of the measurements obtained by 

the sensors. This paper assumes that the satellite orbits are already determined before the maneu-

ver and after. In case the measurements were continuous we could consider only one burn and 

low thrust maneuvers. The techniques described in this work use a number of classical problems. 

The paper describes the techniques for solving them with adjustments required by the goal task. 

The problem of the determination of the orbital transfers for given initial and final orbits has 

an infinite number of solutions. Selection of the most probable scheme of maneuvering is based 

on the evaluation of the characteristic velocity. Selection of one of three (one burn, two burn or 

low thrust) variants of maneuvering is based on the following criteria: 

We assume a one burn transfer when the orbits before and after the maneuver intersect and the 

value of the characteristic velocity does not exceed a specified limit. 
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The two burn transfer is always possible. The times of the burns are selected by the condition 

of the minimum of the characteristic velocity. The evaluation of the two burn maneuver can be 

performed using two techniques: by using the matrices of the partial derivatives or by using the 

Lambert problem depending on the character of orbital motion. 

The low thrust maneuver is evaluated in case we know the spacecraft is equipped with a low 

thrust engine. 

The first section of the report considers the mathematical basis of the algorithms for charac-

terization of the maneuvers. We consider the classical problem of orbit determination given two 

positions and the time for the transfer between them – the Lambert’s problem and the problem of 

evaluation of the required characteristic velocity for coplanar transfers. The algorithm for the 

Lambert’s problem is based on the techniques suggested by the Russian scientist Subbotin
1,2,3

. 

The geometric method is used for evaluation of energy supply required for coplanar maneuvers. 

The second section of the report considers the evaluation of the impulse of the burn when we 

know the orbital parameters before and after the burn. In the case of a one burn maneuver the 

tracks before and after the burn must intersect in the point where the burn was applied.  Thus the 

analysis of the cause of the change of the orbital motion should include determination of the point 

of minimum distance between the tracks before and after the burn. The resulting vector of residu-

als between orbital positions before and after the burn should be compared with the error of posi-

tion prediction based on orbital parameters before and after the burn. 

The third section of the report considers the case when the parameters of two orbits are known 

and two burns perform the transfer between them. The algorithm for determination of the times of 

performing the burns and evaluation of the respective characteristic velocities is described. 

The fourth section describes the algorithm for determination the time interval for the work of 

low thrust engine and the generated acceleration providing the required orbital transfer. 

 

MATHEMATICAL BACKGROUND 

Development of the algorithms for evaluation of orbital maneuvers requires several classical 

methods. Description of these methods is given by Vallado
 4

. In particular this book includes a 

description of the methods of orbit determination for two given positions and the time interval for 

orbital transfer (Lambert Problem) and the analysis of coplanar maneuvers. This section of the 

paper considers these classical problems. The algorithm for Lambert’s problem is based on the 

techniques suggested by Subbotin
1,2,3

. The geometric method is used for evaluation of energy 

supply required for coplanar maneuvers. 

Orbit determination for two given positions of the spacecraft 

The evaluation of the two burn transfer between orbits 1 and 2 requires analysis of the set of 

transfer orbits with further selection of the orbit providing the minimum of supplied characteristic 

velocity. Each transfer orbit is determined by the positions in orbits 1 and 2 and the respective 

times for these positions. In the scope of the non-perturbed motion the problem of orbit determi-

nation for two positions and the time of the transfer between them is a classical Lambert problem. 

Theorem (Euler-Lambert) 

For the two vectors 
  
r
1
, r

2
 of positions of a mass point in the central gravitational field and the 

time interval  t  for transfer from position 
  
r
1

 to position 
  
r

2
, the following equation is valid: 
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 µ t a

3

2 = sin sin( ) + 2 n  (1) 

where 

a  – semi-major axis of the elliptical transfer orbit, 

µ  – gravitational parameter, 

 n  – the number of revolutions of the transfer orbit 
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2

2
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r
1
+ r

2
+ r

2
r
1

4a
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2

2
=

r
1
+ r

2
r

2
r
1

4a
,

0
2

,
2 2 2

.

 (2) 

 

  n
=

2

n

1

n
= + 2 n, 0 < 2  is the arc passed by the mass point, the sign “–“ cor-

responds to the case when  does not exceed , and the sign “+” to the case when   ex-

ceeds . 
  1

n
 and 

  2

n
 are true anomalies corresponding to vectors 

  
r
1
, r

2
 taking into account the 

revolution number. 

Euler – Lambert theorem shows that the time for the orbital transfer of the mass point from 

one position to another depends only on the sum of the radii of these positions r
1
+ r

2
, on the 

value of the chord connecting them 
  
r

2
r
1

, and on the semi-major axis of the orbit  a . Equation 

(1) is also called Euler-Lambert’s equation. 

For historical reference
1
 we note that this theorem for the parabolic orbit was first proved and 

published by Euler in 1743
5
. Lambert’s theorem, generalizing Euler’s result was found in 1761

6
. 

Albouy
7
 noticed that the Euler- Lambert’s equation might have solutions not corresponding to 

any transfer orbits. He suggested the following formulation of Lambert’s theorem: Four functions 

 a , 
  
r
1
+ r

2
, 

  
r

2
r
1

 and  t  are functionally dependent. Albouy gives references to different 

proofs of Lambert’s theorem and techniques of orbit determination for two positions and the time 

of transfer: Laplace
8
, Adams

9
, Dziobek

10
, Routh

11
, Plummer

12
, Battin

13
. Albouy’s pedantry provi-

des a platform for the applied algorithm for solving Euler-Lambert equation. We should search 

for all the solutions of the Euler-Lambert equation. The found solutions should be checked for 

compliance with the scheme of the transfer from the point 
  
r
1

 to the point 
  
r

2
 for the time interval 

 t . It should be noted that Albouy considers the cases when the transfer from 
  
r
1

 to 
  
r

2
 takes not 

more than one revolution. The evaluation of the number of solutions for multi-revolution transfers 

is given in Ref. 14.. 

Consider the algorithm for determining the transfer trajectory for two given positions and the 

time of the transfer under the condition that the transfer is performed by not more than a given 

number of revolutions. This algorithm is based on the methods described in the works
1,2,3

 and a 

note of Albouy
7
. All the solutions of Eq. (1) are searched for. Then the found solutions are che-
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cked for compliance with the scheme of the transfer from point 
  
r
1

 to the point 
  
r

2
 for time inter-

val  t . 

The design of the algorithm uses the following facts, 1,2,3: 

– we always have: sin
2
> 0, cos

2
> 0 ; 

the sign of 
 

sin
2

 is determined by the sign of 
  

cos
n

2
, i.e. 

sign sin
2

=

1, 0
n
<

1,
n
< 2

 (3) 

 

cos
2
< 0 , when the second focus of the transfer ellipse is within the elliptical sector corre-

sponding to the transfer trajectory. 

Let us introduce the following notation: 

   

sin 0

2
=

r
1
+ r

2
+ r

2
r
1

4a
, sin 0

2
=

r
1
+ r

2
r

2
r
1

4a
,

0 0

2 2
, 0 0

2 2
.

 (4) 

 

  

Figure 1. Segment of the Sector Does Not Include 

Any Foci. 

Figure 2. Segment of the Sector Includes the Se-

cond Focus <  

 
 

Figure 3. Segment of the Sector Includes the Se-

cond Focus >  

Figure 4. Segment of the Sector Includes Only 

the First Focus 
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Figure 5. Segment of the Sector Includes Both 

Foci 

 

 

Now consider the following possible positions of the elliptical sector corresponding to the 

transfer trajectory: 

– there are no foci within the elliptical sector, case A, Figure 1, 

– elliptical sector covers only the second focus, case B, Figures 2, 3, 

– elliptical sector covers only the first focus, case C, Figure 4, 

– elliptical sector covers both foci, case D, Figure 5. 

In the case A 
 
=

0
, =

0
. In the case  

 
= 2

0
, =

0
 or 

 
=

0
. In the case C 

 
=

0
, =

0
 or 

 
=

0
. In the case D 

 
= 2

0
, =

0
. 

Thus, instead of Eq. (1) we can consider four equations: 

  

t =
1

µ
a

3

2

0
sin

0 0
sin

0
( ) + 2 n( )  (5) 

  

t =
1

µ
a

3

2 2
0

sin
0

( )
0

sin
0

( ) + 2 n( )  (6) 

  

t =
1

µ
a

3

2

0
sin

0
+

0
sin

0
( ) + 2 n( )  (7) 

  

t =
1

µ
a

3

2 2
0

sin
0

( ) +
0

sin
0

( ) + 2 n( )  (8) 

 

Among the solutions of these equations we may find some that do not correspond to transfer 

trajectories, i.e. those that do not start and finish in the given points. Thus we will call these four 

equations an extension of the Euler-Lambert equation. The solutions of the extended Euler-

Lambert equation should be checked for compliance with the transfer trajectories. 

The selection of the numerical method for solving the equations should account for the charac-

ter of the functional dependence of the right parts of the equations (5)-(8) on a . The functions of 

the right parts of the equations (5) and (7), monotonically decrease with the increase of  a  for 

  n = 0  and monotonically increase for 
  
n = 1, 2, ... . The functions of the right parts of the equa-

tions (6) and (8), increase for all values of 
  
n = 0, 1, 2, ... . Thus for solving equations (5)-(8) we 

can use the bisection method and the golden section method. 
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The algorithm described further was used for the task of recovery of the orbital injection 

scheme for the case of injection with the change of inclination
14

. 

Algorithm for Lambert problem 

Input information: 

r
src

 – initial position of the spacecraft; 

r
trg

 – final position of the spacecraft; 

 t  – time interval for the transfer; 

  
N

max
 – maximum number of revolutions for the transfer. 

 

Output information: 

N
ELM

 – the number of acquired solutions (the number of records in the 

output array); 

k
,i

k
,

k
, e

k
, p

k
, t

,k{ } , 

  
k = 1,..., N

ELM
 

– Output array, each record contain the parameters of the transfer 

orbit: 

 

Where 

k
 – longitude of ascending node; 

 
i
k

 – inclination; 

 k
 – pericenter argument; 

e
k

 – eccentricity; 

 
p

k
 – parameter of elliptical orbit; 

  
t
P,k

 – time of passing the pericenter. 

 

Description of the algorithm 

1. If the vectors 
  
r
src

 and 
  
r

trg
 are collinear, the algorithm is finished with a negative return 

code. Otherwise we calculate the vector 

   

m
0
= mx

0
, my

0
, mz

0( )
T

=
rsrc r

trg

rsrc r
trg

.  

2. Calculate 2 vectors: c
01
= m

0
sign m

z

0( ) and c
02
= m

0
sign m

z

0( ) , 

where 
  
sign m

z

0( )  is the sign of the z-component of vector   m
0

. 

The index  k  of the resulting array is set to zero. 

Items 3-5 are performed for each vector 
  
c

01 and   c
02 . In the description of the algorithm 

these vectors will be denoted as 
   
c

0i
, i = 1,2 . The values calculated on their basis will have index 

 i .as well. 
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3. Then calculate the inclination: 
  
i
i
= arccos c

z

0i( ) , where c
z

0i - is the z-component of vector c
0i  

4. The longitude of the ascending node  
 i

 is determined using conditions: 

  

sin
i
=

c
x
0i

sin i
i

, cos
i
=

c
y
0i

sin i
i

 (9) 

5. Calculate the difference of true anomalies 
 i

 of two given positions using the values  

sin
i

and 
  
cos

i
, calculated by formulas: 

   

cos
i
=

r
src

,r
trg( )

r
src

r
trg

, sin
i
= c

0i
,m

0( )
r
src

r
trg

r
src

r
trg

.  (10) 

The cycle for index  i  is completed. The yield is the two values of the difference of the true 

anomalies: 
 1

 and 
 2

. 

6. Then calculate the length 
 
s of the interval connecting the initial r

src
 and final 

  
r
trg

 posi-

tions: 

.
  
s = r

src
r
trg

. (11) 

7. Using the algorithm for solving the extended Lambert’s equation we find two arrays of so-

lutions: 

a
1,k

,
1,k

,
1,k{ } , k = 1,..., N

1,LEQ
 

  
a

2,k
,

2,k
,

2,k{ } , k = 1,..., N
2,LEQ

 

(12) 

The first array corresponds to the value of the difference of true anomalies 
 1

, and the sec-

ond one - to 
 2

. 

8. Then we calculate the unit vector corresponding to vector 
  
r
src

 

   

r
src

0
= x

src

0
, y

src

0
, z

src

0( )
T

=
r

src

r
src

 (13) 

9. The cycle for 
  
j = 1,..., N

1,LEQ
+ N

2,LEQ
performs operations of items 10-16. 

10. Five values are generated: 

i
j
=

i
1
, if j N

1,LEQ

i
2
, if j > N

1,LEQ

 

  

j
=

1
, if j N

1,LEQ

2
, if j > N

1,LEQ

 

  

a
j
=

a
1, j

, if j N
1,LEQ

a
2, j N

1,LEQ
+1

, if j > N
1,LEQ
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j
=

1, j
, if j N

1,LEQ

2, j N
1,LEQ

+1
, if j > N

1,LEQ

 

  

j
=

1, j
, if j N

1,LEQ

2, j N
1,LEQ

+1
, if j > N

1,LEQ

 

 

11. Then calculate the argument of latitude: 

  

u =

arccos(x
src

0 cos
j
+ y

src

0 sin
j
) , if z

src

0 0

2 arccos(x
src

0 cos
j
+ y

src

0 sin
j
), if z

src

0
< 0

 (14) 

12. Then we calculate the parameters connecting the auxiliary angles and  with the values 

of eccentric anomaly in the initial and final points. 

  
E

2
E

1
= E

2m1
=

j j

2
 (15) 

   

ecos E
2 p1

= e
cE 2 p1

= 1

r
src

+ r
trg

2a
j

1

cos E
2m1

 (16) 

   

esin E
2 p1

= e
sE 2 p1

=

r
src

r
trg

2a
j

1

sin E
2m1

, E
2 p1

=
E

1
+ E

2

2
 (17) 

 

Using the values of the sine and cosine of the half-sum of eccentric anomalies we can cal-

culate the value of this half-sum 
  
E

2 p1
. For this purpose we can use the function atan2( ). 

The values of the eccentric anomalies for the initial 
  
E

1
 and the final 

  
E

2
 points are calculated 

using formulas: 

  
E

1
= E

2 p1
E

2m1
 (18) 

  
E

2
= E

2 p1
+ E

2m1
 (19) 

13.  Then we calculate: the value of the eccentricity 

e
j
=

1

r
src

+ r
trg

2a

cos
E

1
E

2

2
cos

E
1
+ E

2

2

 (20) 

14. the true anomaly for the initial point: 

  

= 2arctg
1+ e

j

1 e
j

tg
E

1

2
 (21) 
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15. the argument of the pericenter: 

j
= u  (22) 

16. time of passing the pericenter: 

  

t
P, j

=
a

j

3

µ
E

1
esin E

1( )  (23) 

17. parameter of the elliptical orbit: 

  
p

j
= a

j
1 e

j

2( )  (24) 

18. Using the determined elements we calculate the state vectors for the times 
  
t
1
= 0  and 

  
t

2
= t : r

j ,1
and r

j ,2
. Then we calculate the residual: d

j
= r

src
r

j ,1
+ r

trg
r

j ,2
. If d

j
is 

smaller than the set threshold value the solution is saved, otherwise - discarded. In case the solu-

tion is saved we make the following assignments: 

  
k = k +1,

k
= j, i

k
= i j , k

= j , e
k
= e j , p

k
= p j , t

P,k
= tP, j  

19. After the completion of the cycle for 
 
j  index  k  is used for forming the length of the out-

put array: 
 
N

ELM
= k . 

 

Algorithm for the Extended Lambert Equation 

The algorithm finds the solutions of the extended Lambert’s equation (1). The algorithm gen-

erates the array containing the values of the semi-major axis and auxiliary angles  and . The 

true solutions of Lambert’s equation, i.e. the solutions corresponding to certain transfer orbit are 

among the elements of this array. The search for the true solutions requires an additional check 

which is performed by the algorithm of higher level. 

Input information: 

r
src

 – Magnitude of the vector defining the initial position of the spacecraft, 

  
r
trg

 – Magnitude of the vector defining the final position of the spacecraft, 

 t  – time interval of the transfer, 

  
N

max
 – maximum of the number of revolutions for the transfer, 

 – difference of true anomalies. 

 

Output data: 

 
N

LEQ
 – the number of elements in the array, 

  
a

k
,

k
,

k
, N

k{ }
  

k = 1,..., N
LEQ

 – determined values.  

 

We set the initial value of index 
  
k = 0 . 
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The operations 1-3 are performed in the cycle for 
 
N from 

  
0 to N

max
1( ) . We calculate 

the minimum possible value of the semi-major axis 
   
a =

r
src

+ r
trg

+ s

4
 of the transfer trajectory 

and the angle 
 

0 <
0
< , determined by the equality:  

   

sin
0

2
=

r
src

+ r
trg

s

4a
 (25) 

The minimum value of the semi-major axis can be attained only for the case boundary el-

liptical sector. In this case the segment connecting the ends of radius- vectors 
  
r
1

and 
  
r

2
, includes 

the second focus of the ellipse, the angle = . 

If ,  we check the equality: 

  
µ t = a

3

2

0
sin

0
( ) + 2 N  (26) 

If the equality is satisfied we save in the output array the values: 
  
a, = , =

0
, N . For do-

ing this we add 1 to the index  k  and make the assignments: 
  
a

k
= a,

k
= ,

k
=

0
, N

k
= N . 

After that we return to the beginning of the cycle with new value of N . 

If 
 

< 2 , we check the equality: 

  
µ t = a

3

2 +
0

sin
0

( ) + 2 N  (27) 

If the equality is satisfied we make the assignments:   k = k +1, 
 
a

k
= a , 

 k
= , 

  k
=

0
, 

N = N
k

 and we go to the beginning of the cycle with new value of  N . 

If none of the above mentioned equalities are satisfied we go to the next item  2. 

1. Within the interval from 
   
a

min
=

r
src

+ r
trg

+ s

4
+ a  to 

  
a

max
we search for the zeroes of 

two functions whose shape depends on the value of the angle . Here the parameter 
 a

 

is of the order of unit meters, and 
  
a

max
 does not exceed  300,000 km.  

If  ,  we search for the zeroes of functions: 

  
1

a( ) = µ t a

3

2

0
sin

0 0
sin

0( ) + 2 N , 

  
2

a( ) = µ t a

3

2 2
0

sin
0( ) 0

sin
0( ) + 2 N . 

(28) 

If 
 

< 2 , we search for the zeroes of functions: 
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3
a( ) = µ t a

3

2

0
sin

0
+

0
sin

0( ) + 2 N , 

  
4

a( ) = µ t a

3

2 2
0

sin
0( ) + 0

sin
0( ) + 2 N . 

(29) 

Where 

   

sin 0

2
=

r
src

+ r
trg

+ s

4a
, sin 0

2
=

r
src

+ r
trg

s

4a
. (30) 

Thus, using the bisection algorithm within the interval 
  

a
min

, a
max

 we find the value 
  
a

=0
, 

for which the function 
 k

 is equal to zero.  

3. Then we calculate the angles 
 
0 <

0
< , 0 <

0
< , determined by the equalities: 

   

sin 0

2
=

r
src

+ r
trg

+ s

4a
=0

, sin 0

2
=

r
src

+ r
trg

s

4a
=0

. (31) 

Depending on the number of the function k  we calculate the angles and : 

 
k    

1 
 
=

0
 

 
=

0
 

2 
 
2

0
 

 
=

0
 

3 
 
=

0
 

 
=

0
 

4 
 
2

0
 

 
=

0
 

In the output array we save the found value of the semi-major axis 
  
a

=0
 and the correspond-

ing values of 
  

, , N . For this we make the assignments: 
  
k = k +1, a

k
= a

=0
,

  k
= ,  

  k
= , N

k
= N . 

4. After completion of the cycle the index k  is used for forming the length of the output array: 

 
N

LEQ
= k . 

Evaluation of the energy costs for coplanar transfers. Geometrical method 

For maneuver characterization problems we always know the state vectors for the spacecraft 

before and after the maneuver. In the scope of spacecraft control theory these problems are called 

rendezvous problems. Thus we should use the techniques for solving rendezvous problem as the 

basis for the maneuver characterization problem.  In the case of the non- perturbed motion this is 

the Lambert problem. However, for evaluation of the results we should compare the obtained en-

ergy costs with the case for which we have the parameters of the target orbit, but the position in 

this orbit is not defined. When we control the spacecraft for reaching certain position for a given 

time we perform phasing maneuvers which provides such conditions for the orbital transfer that 

the energy cost for the orbital transfer with the set position in the target orbit does not signifi-
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cantly differ from the orbital transfer with an arbitrary position of the spacecraft in the target orbit 

after the transfer maneuver. 

Let us consider the geometrical method of the transfer from one coplanar orbit to another. 

Consider the family of ellipses with the focus in the origin of coordinates. This family of ellipses 

is described by the parameters  l  and  f  which are determined by the following relationships 

  
c =

f

2
, a =

l

2
, e =

c

a
=

f

a
,  (32) 

where 

c  – half distance between the foci 

 a  – semi-major axis 

 e  – eccentricity 

If the pericenter is placed to the left of the coordinate origin then 0f > , otherwise 0f < . 

The distance to the spacecraft and the velocity at apocenter 
  
r , V  and pericenter 

  
r , V  

have the following relationships with l  and f : 

  

r =
l + f

2
, V =

2µ

l

l f

l + f
,

r =
l f

2
, V =

2µ

l

l + f

l f
,

 (33) 

where µ  is the gravitational constant. 

Each orbit is represented by a point in the semi-plane 
  l, f , l > 0 . If 

  f > 0 , we have apocenter 

right from the origin of coordinates, if 
  f < 0  - pericenter. We will consider applying the burn 

pulses only at pericenter and apocenter. 

Let us consider the orbital transfer from the point 
  
l
1
, f

1
 to the point 

  
l
2
, f

2
. If the burn is ap-

plied at the apsidal point right-side from the origin of coordinates, the orbital transfer must keep 

the distance to this apsidal point. For 
  
f
1
> 0, f

2
> 0  - this is an orbital transfer for which the 

apocenter will remain right-side from the origin of coordinates before and after the burn, thus   

  

l
1
+ f

1

2
=

l
2
+ f

2

2
 (34) 

The case 
  
f
1
> 0, f

2
< 0  correspond to the orbital transfer for which we will have the pericen-

ter right-side from the origin of coordinates after the burn is applied. Thus: 

  

l
1
+ f

1

2
=

l
2

f
2

2
=

l
2
+ f

2

2
 (35) 

Consideration of the cases 
  
f
1

0, f
2
< 0  and 

  
f
1

0, f
2
> 0 , yields that the application of the 

burn on the right-side of the origin of coordinates keeps the value  l + f . 
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Similar considerations on the cases when the burn is applied left-side from the origin of coor-

dinates will result in the conclusion that for these cases the value  l + f  is kept. Thus the broken 

line in the semi-plane 
  l, f , l > 0 , corresponding to the sequence of orbital transfers will consist 

of segments with inclination angle tangents -1 and +1 (Fig. 6). The value -1 for the inclination 

angle tangent corresponds to the burn applied right-side from the origin of coordinates and the 

value +1 – corresponds to the left-side application of burn. The velocities in the apsidal points (in 

the apocenter or pericenter) right-side 
 
V

r
 and left-side 

 
V

l
 from the origin of coordinates are cal-

culated using formulas: 

  

Vr =
2µ(l f )

l(l + f )
, V

l
=

2µ(l + f )

l(l f )
.  (36) 

  

Vr =
2µ(l

2
f

2
)

l
2
(l

2
+ f

2
)

2µ(l
1

f
1
)

l
1
(l

1
+ f

1
)

, V
l
=

2µ(l
2
+ f

2
)

l
2
(l

2
f

2
)

2µ(l
1
+ f

1
)

l
2
(l

1
f
1
)

.  (37) 

 

For the orbital transfer from the point 
1 1
,l f  to the point 

2 2
,l f  the values of the transfer im-

pulses rV  (when the burn is applied right-side from the origin of coordinates) and 
l

V  (when 

the burn is applied left-side from the origin of coordinates) are calculated using the formulas: 

 

 
Figure 6. Orbital Transfers Depicted In the Semi-

Plane 
  l, f , l > 0 . For the Transfer From the 

Point 
  
l
1
, f

1
 To the Point 

  
l
2
, f

2
 The Burn is Ap-

plied Right-Side From the Origin Of Coordina-

tes, For the Transfer From 
  
l
2
, f

2
 To the Point 

l
3
, f

3
 – To the Left Side 

Figure 7. Hohmann’s Transfer Plotted In the 

Semi-Plane 
  l, f , l > 0 . The Upper Broken Line 

Corresponds To the First Burn Applied Left-

Side From the Origin of Coordinates, the Lower 

Line – To the Right-Side Application. 

 

 

Let us consider the Hohmann’s transfer from the circular orbit with radius 
  
l
1

 to the circular 

orbit with radius 
  
l
2

 (Figure 7). The elliptical transfer orbit will have the parameters: 

l
3
=

l
1
+ l

2

2
, f

3
= ±

l
2

l
1

2
.  The sign «+» correspond to the burn applied to the left-side of the 
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origin of coordinates and the sign «-» - to the right-side application. Using (37) for 
  
l
2
> l

1
, we 

will obtain the consumption of the characteristic velocity for the Hohmann’s transfer: 

  

V
H
=

2µ

l
1

C ( ) , C ( ) =
2

1+
1+

1 2

+1( )
,  (38) 

where =
l
2

l
1

. 

The graph of the function 
 
C ( )  is shown in Figure 8. 

Let us consider the three burn bi-elliptical transfer from the circular orbit with radius 
  
l
1

 to the 

circular orbit with radius 
  
l
2

(Figure 9). The first burn is applied left-side from the origin of coor-

dinates and makes the semi-major axis of the first transfer orbit  times greater, i.e. 

  

l
p1

= l
1

, 

where  >1 . Parameters of intermediate orbits lp1
, f p1

, lp2
, f p2

 are connected by the following 

relationships: 

  

l
1

2
=

lp1
f p1

2
,

lp1
+ f p1

2
=

lp2
+ f p2

2
,

lp2
f p2

2
=

l
2

2
.  (39) 

 

 

 

Figure 8. Graph Of the Function 
 
C ( ) . Figure 9. The Three Burn Bi-Elliptical Transfer 

From the Circular Orbit With Radius l1 To the 

Circular Orbit With Radius l2 and the Hohmann’s 

Transfer. Hohmann’s Transfer Corresponds To the 

Broken Line Including the Points: (l1,0) -> (l3,f3) -> 

(l2,0). The Three Burn Bi-Elliptical Transfer Cor-

responds To the Broken Line Including the Points: 

(l1,0) -> (lp1,fp1) -> (lp2,fp2) -> (l2,0). 

 

Solving the system of equations (39) with respect to 
  
f p1

, lp2
, f p2

, we will have: 
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f p1

= 1( ) l1, lp2
=

2 1( ) l1 + l
2

2
, f p2

=
2 1( ) l1 l

2

2
 (40) 

The burn impulses for the first, the second and the third segments of the bi-elliptical transfer 

are calculated using formulas: 

  

V
1
=

2µ

l
1

2 1
1 , 

  

V
2
=

2µ

l
1

1

2 1

2l
2

2 1( ) l1 + l
2

1
,  

  

V
3
=

2µ

l
2

1
2 2 1( ) l1
2 1( ) l1 + l

2

 

(41) 

The total v for the three burn bi-elliptical transfer is calculated by the formula: 

  
V

3B
= V

1
+ V

2
+ V

3
 (42) 

For = l
1
+ l

2( ) / 2 the bi-elliptical three burn transfer degenerates into the Hohmann’s trans-

fer and the value of  
  

V
3B

 becomes equal to 
 

V
H

. 

The non-dimensional values  
  
l
1
, l

2
 - mean the ratios of the radii of the orbits to mean Earth 

radius. For transition to the dimensional value of the magnitude of the characteristic velocity we 

should multiply the non-dimensional value by the value of the first escape velocity 

  
µ / R

E
= 7.905365716 km/s .  

We will compare the characteristic velocity for the three burn bi-elliptical transfer with that 

for the Hohmann’s transfer. Figure 10 shows the dependence of  
  

V
3B

 from  for 
  
l
1
= 1, l

2
= 2  

with the characteristic velocity for the Hohmann’s transfer at the background which are presented 

by the straight line parallel to the abscissa axis. For 
 

= 1.5  the three burn transfer degenerates 

into two burn Hohmann’s transfer with energy consumption of 0.67884128 in non-dimensional 

values. For the values of  greater or lower than 1.5 the consumption for the three burn transfer 

is greater than that for the Hohmann.  

Let us now set 
  

= 1+ l
2

 and compare the characteristic velocity for the three burn and 

Hohmann’s transfer from the circular orbit with radius 
  
l
1
= 1 to the orbit with radius 

  
l
2

. Figure 

11 shows the difference of the characteristic velocity for the three burn and Hohmann’s transfer. 

Within the interval of 
  
l
2

 values from 13 to 14 the difference in the characteristic velocity changes 

from 0.0029183931 to -0.0006411714, i.e., it changes sign. Thus for the value of 
  
l
2
= 14  we 

have less change in characteristic velocity for the three burn bi-elliptical transfer than for the 

Hohmann transfer. 

 



 16

 

 

Figure 10. Comparing The Characteristic 

Velocity For the Three Burn Bi-Elliptical and 

Hohmann’s Transfer For the Radii of 1 And  3 

For Initial and The Target Orbit Respectively. 

The Abscissa Axis Presents  - The Ratio Of 

the Pericenter Distance of the First Transfer 

Orbit To the Radius of the Initial Orbit. The 

Ordinate Axis Presents the Characteristic Ve-

locity Consumption In Non-Dimensional Cha-

racteristic Velocity Consumption For the Ho-

hmann’s Transfer. 

Figure 11. The Difference of Characteristic Ve-

locity (In Non-Dimensional Values). For the Three 

Burn Bi-Elliptical and Hohmann’s Transfer As 

Function of  
  
l
2

 for 
  
l
1
=1 , 

  
= 1+ l

2
 

 

The general result is known [4]. For the ratio of orbital radiuses 
  
l
2

/ l
1
<11.94  the characteris-

tic velocity for the Hohmann transfer is smaller than for the three burn bi-elliptical transfer.  For 

the ratio of the radii 
  

11.94 < l
2

/ l
1
<15.58  there exists the value of , for which the consump-

tion for the three burn transfer is smaller than for the Hohmann’s one. For the ratio of the orbital 

radii 
  

l
2

/ l
1
>15.58  the characteristic velocity for the three burn transfer is smaller than for the 

Hohmann transfer for any value of 
 

>1 . However, the increase in the characteristic velocity by 

using the three burn bi-elliptical transfer instead of Hohmann’s one does not exceed  8%, and the 

time required for the transfer increases several times. 

The above considerations lead to the following conclusions. The evaluation of the characteris-

tic velocity for the Hohmann’s transfer is the basic value for checking the reliability of other pos-

sible maneuvering profiles with regard to energy cost. The geometrical technique for analysis of 

orbital transfers is an efficient tool for analysis of maneuvering profiles without changes of the 

orbital plane.  

The general result is known [4]. For the ratio of orbital radiuses 
  

l
2

/ l
1
<11.94  the characteris-

tic velocity for the Hohmann transfer is smaller than for the three burn bi-elliptical transfer.  For 

the ratio of the radiuses 
  

11.94 < l
2

/ l
1
<15.58  there exists the value of , for which the con-

sumption for the three burn transfer is smaller than for the Hohmann’s one. For the ratio of the 
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orbital radii 
  

l
2

/ l
1
>15.58  the characteristic velocity for the three burn transfer is smaller than 

for the Hohmann transfer for any value of 
 

>1 . However, the increase in the characteristic ve-

locity by using the three burn bi-elliptical transfer instead of Hohmann’s one does not exceed  

8%, and the time required for the transfer increases several times. 

 

 

Figure 12. Difference Of Characteristic Velocity Consumption (In Non-Dimensional Values) For 

the Three Burn Bi-Elliptical and Hohmann’s Transfer As Function of 
  
l
1

 and 
  
l
2

 for 
  
l
1
=1 , 

  
= 1+ l

2
 

 

Figure 12. presents the difference in the characteristic velocity for the three burn and 

Hohmann’s transfers for  1 l
1

1.1, 5 l
2

20, = l
1
+ l

2
. 

The above considerations lead to the following conclusions. The evaluation of the characteris-

tic velocity for the Hohmann’s transfer is the basic value for checking the reliability of other pos-

sible maneuvering profiles with regard to energy cost. The geometrical technique for analysis of 

orbital transfers is an efficient tool for analysis of maneuvering profiles without changes of the 

orbital plane.  

ALGORITHM FOR EVALUATION OF ONE BURN MANEUVER 

The change of orbital parameters caused by thrust forces, in the case the orbital parameters 

(TLE) before and after the burn are available can be interpreted as a one burn maneuver. This is 
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the most frequent case. If the determination of the orbital parameters occurred more frequently 

than the maneuvers, all the changes in the orbits could be interpreted as one burn maneuvers.  

If a one burn maneuver occurred the trajectories before and after the burn must intersect in the 

point where the thrust was applied. Thus the analysis of possible causes of the change of the or-

bital parameters we should search for the point corresponding to the minimum distance between 

the trajectories before and after the thrust. The resulting vector of residuals between orbital posi-

tions before and after the burn should be compared with the error of position prediction based on 

the orbital parameters before and after the burn.  

Algorithm for the search of the minimum distance between the orbits 

When we search for the minimum distance between the orbits we know the time interval for 

the search. This interval coincides with the time interval within which the burn was applied. It 

should be noted that in case we have available the TLE before the thrust and the TLE after the 

thrust the epochs of these TLEs should not be identified with the interval of maneuvering. The 

TLE epoch normally refers to the time of nodal crossing and not to the times of the last measure-

ments of the observation interval for which the TLE have been generated. Thus in case we have 

the TLE, the interval for the search of the minimum distance should be extended by one period to 

the left from the epoch of TLE before the burn and by one period to the right from the epoch of 

TLE after the burn. 

Let us introduce the notation: 

  
t
1
,t

2
 – 

Boundaries for the search of the minimum 

distance between the orbits; 

   
r
1

t( ) = x
1

t( ) , y
1

t( ) , z
1

t( )( )
T

 – 
Position vector of the spacecraft based on or-

bital data before the burn; 

v
1

t( ) = Vx1
t( ) , Vy1

t( ) , Vz1 t( )( )
T

 – 
Velocity vector of the spacecraft based on or-

bital data before the burn; 

   
r
2

t( ) = x
2

t( ) , y
2

t( ) , z
2

t( )( )
T

 – 
Position vector of the spacecraft based on or-

bital data after the burn; 

v
2

t( ) = Vx2
t( ) , Vy2

t( ) , Vz2
t( )( )

T

 – 
Velocity vector of the spacecraft based on or-

bital data after the burn. 

 

The task is to find the time  t , for which the value 
   
r
2

t( ) r
1

t( )  reaches its minimum. 

For the search of the minimum distance we will use the fact that the derivative of the function 

   
r
2

t( ) r
1

t( )  must change sign. In the case when for the entire interval 
  

t
1
,t

2
 the derivative of 

the considered function does not change sign, the minimum distance corresponds to one of the 

boundary values of the interval
  

t
1
,t

2
. The derivative of the function 

   
r
2

t( ) r
1

t( )  is calculated 

by the function: 

   

d

dt
r

2
r

1
=

x
2

x
1

( ) Vx2
Vx1( ) + y

2
y

1
( ) Vy2

Vy11( ) + z
2

z
1

( ) Vz2
Vz1( )

x
2

x
1

( )
2

+ y
2

y
1

( )
2

+ z
2

z
1

( )
2

 (43) 
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The search for the points where the derivative of the function 
   
r
2

t( ) r
1

t( )  changes sign is 

performed by scanning of the interval of the search. However, the scanning should be performed 

not by the time as variable, but using the true anomaly with permanent step h , equal, for exam-

ple, to 1° or 10°. 

Consider the transition from the time of the previous step 
 
t
p

 to the time of the current step of 

scanning t . For the time pt  using orbital data before the maneuver we calculate the osculating 

orbital elements: 

M p  – mean anomaly; 

p
 – true anomaly; 

 
e

p
 – eccentricity; 

n
p

 – mean motion. 

The transition to the time t  of the current step of scanning is performed using formulas: 

  

E = 2arctg
1 e

p

1+ e
p

tg
p
+ h

2
 

  

M =

E e
p

sin E, if E e
p

sin E M p ,

E e
p

sin E + 2 , if E e
p

sin E < M p ,
 

 

t = t
p
+

M M
p

n
p

 

(44) 

The scanning is finished when 
  
t > t

2
. 

For each step of scanning we calculate the derivative of the distance between the orbits: 

   

D t( ) =
d

dt
r

2
t( ) r

1
t( )  (44) 

using Eq. (43). If the condition: 

  
D tp( ) D t( ) 0  (45) 

is satisfied the derivative changes its sign within the interval 
  

t
p
, t . In this case for the time 

  
t
m
= t

p
+ t( ) / 2  we calculate the value of the derivative of the distance between orbits 

 
D t

m( ) . 
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If the values 
  
D

p
= D tp( ) , D

m
= D tm( ) , D = D t( ) are monotonic, i.e. D

p
< D

m
< D  or 

D
p
> D

m
> D  we calculate the time 

0
t , when the derivative of the distance between orbits is 

zero, using the formula: 

  

t
0
= t

p

D
m

D

D
p

D
m( ) D

p
D( )

+ t
m

D
p

D

D
m

D
p( ) D

m
D( )

+ t
D

m
D

D D
m( ) D D

p( )
.  (46) 

If the monotonic condition for the values of D
p
, D

m
, D  is not satisfied, we set: t

0
= t

m
. 

Calculation of the impulse for the scheme of the  one burn maneuver 

Further we perform the calculation of the consumption of characteristic velocity for the ma-

neuver and the vectors of relative positions and velocities in the RNB coordinate frame. For this 

purpose for the time 
0

t we calculate the state vectors x
1
, y

1
, z

1
, Vx

1
, Vy

1
, Vz

1( )
T

, 

x
2
, y

2
, z

2
, Vx

2
, Vy

2
, Vz

2( )
T

 using initial conditions before and after the maneuver. 

Then we calculate the consumption of the characteristic velocity for the maneuver using the for-

mula: 

  
DV = V

x2
V

x1( )
2

+ V
y2

V
y1( )

2

+ V
z2

V
z1( )

2

 (47) 

On the basis of the state vector before the maneuver we calculate the matrix 
 
M

RNB
 of the 

transformation to the RNB coordinate frame: 
  
M

RNB
= e

r
, e

n
, e

b

T

 , where 

  

e
r
=

r
1

r
1

 
– 

unit vector directed to the point 
   
r̀

1
= x

1
, y

1
, z

1( )
T

, 

 

e
b
=

r
1

V
1

r
1

V
1

 
– 

unit vector orthogonal to the orbital plane, 
   
V

1
= V

x1
, V

y1
, V

z1( )
T

, 

=
n r b

e e e . –  

The vectors of the relative positions and velocities for the RNB coordinate frame are calcu-

lated by the formulas: 

   

DR
RNB

= M
RNB

x
2

x
1

y
2

y
1

z
2

z
1

 (48) 

   

DV
RNB

= M
RNB

V
x2

V
x1

V
y2

V
y1

V
z2

V
z1

 (49) 
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Reliability criteria for the obtained evaluation of the impulse 

The major criterion to be used for assessment of the reliability of the obtained evaluation of 

the impulse is the distance between the positions of the spacecraft in the first and the second orbit 

for the time of minimum distance. This distance is calculated by the formula: 

  
DR = x

2
x

1( )
2

+ y
2

y
1( )

2

+ z
2

z
1( )

2

 (50) 

If the value DR  exceeds the threshold determined by the accuracy of the orbital data we can 

consider that by the time of minimum distance the orbits do not intersect and the obtained esti-

mate is not reliable. 

When  DR  is smaller than the threshold we perform additional analysis including comparing 

the value of  DV  with the characteristic velocity required for the Hohmann transfer or inclination 

changing maneuver. If the orbital planes before and after the maneuver coincide, a coplanar ma-

neuver has occurred. Energy cost of this maneuver should be comparable with the cost of one of 

the impulses of the Hohmann transfer. If the orbital plane has changed the value of  DV  should 

be compared with the characteristic velocity required for the inclination changing maneuver. 

We should note one very important empirical criterion for the impulses with modules not ex-

ceeding 1 m/s. If the maximum (in absolute value) component of the vector 
 
DR

RNB
 is the com-

ponent corresponding to the direction of vector  N , and the maximum (in absolute value) compo-

nent of the vector DV
RNB

 - is the component corresponding to the direction of vector  R , the ob-

tained estimate of the maneuver is not reliable and the difference between the orbital parameters 

is caused by the errors of orbit determination. 

Algorithm for the calculation of the length of the impulse 

The length of the impulse can be calculated knowing the characteristic velocity, if the mass of 

the spacecraft before the burn, the thrust and the specific impulse of the engine are known. Under 

the conditions when these parameters are not available the length of the impulse can be deter-

mined on the basis of the following empirical table which presents the acceleration as function of 

the characteristic velocity. The table is based on the simple consideration that small impulses 

would not be generated by high-powered engines and the big ones – by the low thrust engines. 

Characteristic velocity, m/s Acceleration, m/s
2
  

0-5 0.1 

5-70 0.2 

70-150 0.5 

150-1000 2 

1000-… 10 

Depending on 
 
DV - the estimate of the characteristic velocity of the maneuver, the mean ac-

celeration a is determined. The length of the impulse 
  

t
imp

 is calculated as 
  

t
imp

=
DV

a
. The 

time of the start of the maneuver t
beg_imp

 and the time end_impt  of its end are calculated using the 

formulas: 

  
t

beg_imp
= t

0

t
imp

2
, t

end_imp
= t

0
+

t
imp

2
 (51) 
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where 
  
t
0

is the time corresponding to the minimum distance between orbits (the time of the burn 

in the scope of impulse understanding)  

ALGORITHM FOR EVALUATION OF TWO BURN MANEUVER 

Assume the orbital parameters for times 
  
t
E1

, t
E2

, 
  
t
E1

< t
E2

 and the interval of possible ma-

neuvering 
  
t
m1

, 
  
t
m2

 are known. The orbit corresponding to the time 
1E

t , will be called the initial 

one and the orbit corresponding to the time 
  
t
E2

 - the target one. The position vector of the space-

craft as a function of time will be called the trajectory. Corresponding to the initial and target or-

bit we will differ the initial and the target trajectories. If within the interval 
  
t
m1

, 
  
t
m2

 we cannot 

find the time of closest approach of the initial and target trajectories we will consider that be-

tween the times 
  
t
m1

 and 
  
t
m2

 more than one burn has been performed. Then we will consider the 

algorithm for the evaluation of the impulses and the times of their application under the assump-

tion that a two burn maneuver has been performed resulting in the transfer from the initial orbit to 

the target one. 

First we will consider the variant when the orbital parameters are represented by position 

  
r

1
,r

2
 and velocity v

1
,v

2
 vectors for the times 

  
t
E1

, 
  
t
E2

. 

The task of evaluating the impulses and the times of their application is equivalent to the task 

of determining the transfer orbit between certain positions in the initial and target trajectories re-

spectively. Selecting the times 
  
t
1

,t
2

t
m1

,t
m2( ) ,t1 < t

2
we can obtain the infinite set of such 

orbits. The desired orbit should be selected to satisfy the condition of the minimum consumption 

of characteristic velocity for transfer. 

Selection of the time 
  
t
1

 defines the position of the spacecraft in the initial trajectory and the 

selection of the time 
  
t
2

 defines the position of the spacecraft in the target trajectory. Thus for the 

search of the transfer orbit we have two positions and the respective times. So the search of the 

transfer orbit can be considered the solving of the boundary problem for the differential equation 

describing the motion of the spacecraft. Since here we do not deal with the task of spacecraft 

flight control and consider the task of evaluation of the maneuvers which have been performed 

already, we can look for approximate estimates. However, we should mention that the obtained 

approximate estimate is the initial approximation for obtaining the precise solution. 

The considered problem is solved according to the following scheme. We scan the set of trans-

fer orbits and look for the orbit corresponding to the minimum change in characteristic velocity. 

The transfer orbits are generated approximately using two techniques. The technique for generat-

ing the transfer orbits is selected depending on the condition on the value of the impulses required 

for transition to the transfer orbit from the initial one and for transition from the transfer orbit to 

the target one. We consider the following cases: 

– the values of the impulses are smaller than the given threshold and we can use linearity in 

the vicinity of the reference trajectory; 

– the occurred change of the orbital parameters correspond to the change in characteristic 

velocity exceeding the set threshold. 
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When we have the opportunity to use the linearity in the vicinity of the reference trajectory 

then the basic tool for the approximate generation of the transfer orbit is the matrix of partial de-

rivatives of the components of the state vector for the time 
  
t
2

 with respect to the components of 

the state vector for the time 
  
t
1

, calculated along the initial orbit. 

If we can not use the linearity then the basic tool for generating the transfer trajectories is 

Lambert’s problem, which can find the transfer orbit between two positions for the given time 

interval of the transfer. 

The interval of the possible application of the first or the second burn can be limited for the 

following cases: 

 the initial orbit is an eccentric one and the target orbit is near-circular, the inclinations of the 

orbits coincide; 

 the initial orbit is a near-circular one and the target orbit is eccentric, the inclinations coin-

cide; 

 the inclinations of the initial and target orbits are different and the semi-major axes are virtu-

ally the same. 

Let us consider the major idea of the algorithm based on linearity. Let for the time 
1
t  we know 

the state vector of initial orbit r
S

t
1( ) ,vS

t
1( )( )

T

 and the matrix of partial derivatives of the com-

ponents of initial orbit for the time 
2

t  with respect to the components of the state vector for the 

time 
1
t : 

   

t
2
,t

1( ) =
r

S
t
2( ) ,vS

t
2( )( )

r
S

t
1( ) ,vS

t
1( )( )

 (52) 

If at the time 
  
t
1

 we apply the impulse 
  

V
1

, and at the time 
  
t
2

 - the impulse 
  

V
2

, the state 

vector for the time 
  
t
2

 can be approximately represented in the shape: 

   

r
S

t
2( )

v
S

t
2( )

+ t
2
,t

1( )
0

V
1

+
0

V
2

 (53) 

If at the time 
2

t  the spacecraft transferred to the target orbit, the approximate equality is valid: 

   

r
T

t
2( )

v
T

t
2( )

r
S

t
2( )

v
S

t
2( )

+ t
2
,t

1( )
0

V
1

+
0

V
2

 (54) 

We will consider this equality as an equation for the determination of the vectors 
  

V
1

 and 

  
V

2
. Thus, assuming that the thrusts have been performed by the times 

  
t
1

 and 
  
t
2

, we can evalu-

ate them and determine the change in characteristic velocity: 
   

V = V
1
+ V

2
. The times of 

the thrusts are determined by scanning the interval of their possible application under the condi-

tion of the minimum consumption of characteristic velocity. 
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Algorithm for evaluation of two burn maneuvers using linearity 

Input information: 

   
t
E1

, r
EI

,v
EI( )

T

 
– the time and the state vector of initial orbit for this time; 

  
t
1L

,t
2L( )  – interval of possible thrusts for transition from initial orbit to the trans-

fer one; 

  
t
E2

, 
   
r

E2
,v

E2( )
T

 
– the time and the state vector of the target orbit for this time; 

  
t
1R

,t
2R( )  – interval of possible thrusts for transition from transfer orbit to the tar-

get one; 

 

Output information: 

  
t
I 1

 – evaluation of the time of the first thrust; 

   
V

I1
 – evaluation of the first thrust; 

t
I 2

 – evaluation of the time of the second thrust; 

   
V

I 2
 – evaluation of the second thrust. 

Designations 

   
r

S
t( ) ,v

S
t( )( )  – state vector of the initial orbit for the time t ; 

   
r

T
t( ) ,v

T
t( )( )  – state vector of the target orbit for the time t ; 

Algorithm 

1. For the time interval t
1R

,t
2R( )  using the orbital parameters of the target orbit we calculate the 

table of the state vectors with fixed step: 
   

t
T ,i

, r
T

t
T ,i( ) ,vT

t
T ,i( ){ } . We will consider that this ta-

ble comprises 
 
N

T
 elements. 

2. For each time t
T ,i

, i = 1,..., N
T

 using the orbital parameters of the initial orbit we calculate the 

matrix of partial derivatives of the components of the state vector for the time 
  
t
T ,i

 with respect to 

the components of the state vector for the time 
  
t
E1

: 

t
T ,i

,t
E1( ) =

r
S

t
T ,i( ) ,vS

t
T ,i( )( )

r
S

t
E1( ) ,vS

t
E1( )( )

 (55) 

and the vector of residuals between the state vectors in the target and initial orbits for the time  

  
t
T ,i

: 

   

r t
T ,i( )

v t
T ,i( )

=
r
T

t
T ,i( )

v
T

t
T ,i( )

r
S

t
T ,i( )

v
S

t
T ,i( )

 (56) 
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3. Within the interval 
  
t
1L

,t
2L( )  using parameters of the initial orbit we calculate with permanent 

step the state vectors and the matrix of partial derivatives of the state vector for the initial time 

with respect to the state vector for the current time. The results are saved in the table. We will 

consider that the table comprises 
 
N

L
 elements. In this table for each time  tL, j , j = 1,..., NL  we 

have: 

   
rS tL, j( ) ,vS tL, j( )  and 

   

tE1
,tL, j( ) =

rS tE1( ) ,vS tE1( )( )
rS tL, j( ) ,vS tL, j( )( )

 (57) 

4. Then we perform the enumerative calculations for 
  
i = 1,..., N

T
 and 

  
j = 1,..., N L . For each step 

of the enumeration we calculate the matrix: 

  
tT ,i , tL, j( ) = tT ,i ,tE1( ) tE1

,tL, j( )  (58) 

and solve the equation: 

r tT ,i( )
v tT ,i( )

= tT ,i , tL, j( )
0

V
1

+
0

V
2

 (59) 

If the matrix 
  

tT ,i , tL, j( )  is represented in the shape of block matrix: 

  

tT ,i , tL, j( ) = 11 12

21 22

 (60) 

the considered equation splits into two equations: 

   
r t

T ,i( ) = 11
V

1
, v t

T ,i( ) = 22
V

1
+ V

2
 (61) 

We can find the solution of this system of two equations using formulas: 

   
V

1
tL, j( ) = 11

1
r tT ,i( ), V

2
tT ,i( ) = v tT ,i( ) 22

V
1

 (62) 

The result of the enumerative search in the pair of indices 
  
i
m

, j
m

,  for which the sum of the mod-

ules of impulses: V
1
+ V

2
 reaches the minimum. 

5. Then the result is generated: 

   

t
I 1

= tL, jm
, V

I1
= V1 tL, j( ) ,

t
I 21

= tT ,im
, V

I 2
= V2 tT ,i( ).

 (63) 

Algorithm for evaluation of the two burn maneuvers in the case of significant change of 

orbital parameters 

In the cases when the maneuvering changes the orbital parameters to the extent that we can 

not use linearity, the thrusts have such values that making their evaluation we can neglect the 

non-central features of the Earth gravitational field. In this case we can use the Lambert’s prob-

lem.  If a precise estimate is required the solution obtained for Lambert’s problem is the initial 

approximation for the iterative scheme. The algorithm for evaluation of two burn maneuvers us-
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ing Lambert’s problem is similar to the procedure considered above. The difference is that instead 

of solving the Eq. (54) we solve Lambert’s problem. 

Using the evaluation of the time of the transfer from the initial to the target orbit for 

reducing the enumerative search 

1. Minimum time for the transfer is calculated by the formula: 

t
trn
=

a
trn

3

µ
 (64) 

where 

  

a
trn
=

a
1
+ a

2

2
 

- semi-major axis of the transfer 

orbit, 

  
a

1
 - semi-major axis of orbit 1, 

  
a

2
 - semi-major axis of orbit 2. 

 

2. Correction of the interval for the search of maneuvers. Denote the initial interval for the search 

as 
  

t
1
,t

2
. If 

  
t
2

t
1
< 2t

trn
, then the correction of the boundaries of the interval is needed. 

Correction of the boundaries of the search interval is performed using the following procedure. 

We find the time 
  
t
min

, corresponding to the minimum distance between the orbits. It is expedient 

to use for 
  
t
min

the value determined by evaluation of the one burn maneuvers. If  
  
t
1
> t

min
t
trn

, we 

change 
  
t
1

; and set it to 
  
t
min

t
trn

. If 
  
t
2
< t

min
+ t

trn
, we have to change 

  
t
2
. 
  
t

2
 is set to 

  
t
min

+ t
trn

.  

3. For reduction of the enumerative search we should analyze only such times for the 1
st
 and the 

2
nd

 thrusts for which the time interval between them exceeds 
 
t
trn

. 

Using the features of the initial and target orbits for reduction of the enumerative search 

The intervals for the enumerative search can be reduced in special cases. These are the following 

cases: 

– transfer from the eccentric orbit to the near-circular one without change of the inclination 

(circling the orbit); 

– transfer from the near-circular orbit to the eccentric one without change of the inclina-

tion; 

– change of the inclination without significant change of the semi-major axis (less than 

1000 km). 

 

Transfer from the eccentric orbit to the near-circular one without change of the inclination 

The 1
st
 thrust is looked for in the vicinity:  

180
0

1
180

0
+  (65) 

where 
 1

 is true anomaly of the 1
st
 orbit, adjusted to the interval 0º - 360º. 

 Transfer from the near-circular orbit to the eccentric one 

The 2
nd

 thrust is looked for in the vicinity (of the apocenter): 
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180

0

2
180

0
+  (66) 

where 
2
 is true anomaly of the orbit 2, adjusted to the interval 0º - 360º. 

Change of the inclination without significant change of the semi-major axis (less than 1000 

km). 

The 1
st
 thrust is looked for within the following intervals: 

  

0 u
1

u,

180
0

u u
1

180
0
+ u ,

360
0

u u
1

360
0
,

 (67) 

where 
  
u

1
 is the argument of latitude of the spacecraft in the orbit 1. 

Parameter determines the vicinity of the apocenter and parameter  u  — the vicinity of 

the node. The default values of these parameters: 90º. Using the interactive mode these values can 

be changed. 

The algorithm for evaluation of two burn maneuvers for the case of simultaneous change of 

semi-major axis and inclination. 

 

Input information: 

  
t
E1

, 
   
r

E1
,v

E1( )
T

 – the time and the state vector of the initial orbit for this time; 

  
t
E2

, 
   
r

E2
,v

E2( )
T

 – the time and the state vector of the target orbit for this time. 

 

 

Output information: 

t
a1

, V
a1

 – the time and the components of the 1
st
 thrust, 

   
t

a2
, V

a2
 – the time and the components of the 2

nd
  thrust. 

 

Algorithm 

1. Determination of the node closest to the pericenter of the initial orbit. Calculation of the time 

of passing this node. Operations described by items 1.1, 1.2  and 1.3 are performed for this pur-

pose. 

1.1. Calculation of the elements of the initial orbit: 
  
a,e, , i, , argument of latitude 

u  using state vector 
   
r

E1
,v

E1( )
T

 for the time 
  
t
E1

. 

1.2. Calculation of true anomalies 
 0

and  for arguments of latitude 0 and : 

 0
= , =  (68) 
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Adjustment of 
 0

and  to the interval: 
 

, . Calculation of the argument of latitude 

for the node which is closer to the pericenter using the formula: 

  

u
1i
=

0, if
0
< ,

, otherwise.
 (69) 

1.3. Calculation of the time for which the argument of latitude is 
  
u

1i
. For this purpose we 

calculate 
  

t
1i

 the time of the transfer from the point with argument of latitude 
  
u

1i
to the 

point with argument of latitude u. The time for which the argument of latitude is equal to 

  
u

1i
is calculated by the formula: 

  
t
1i
= t

1
t
1i

. 

2. Calculation of the period of the initial orbit by the formula: 

  

T
1
= 2

a
3

µ
 (70) 

3. Preliminary calculation of the time interval of the transfer. Operations 3.1 – 3.4 are performed 

for this purpose. 

3.1. Calculation of the state vector of the initial orbit for the time 
1i
t : 

   
r t

1i( ) ,v t
1i( )( )

T

. 

3.2. Calculation of the orbital elements: 
  
a

2
,e

2
,

2
, i

2
,

2
 using the state vector 

   
r

E2
,v

E2( )
T

 for the time 
  
t
E2

. 

3.3. Calculation of the semi-major axis of the transfer orbit: 

atrn =
a2 + r t1i( )

2
 (71) 

3.4. Calculation of the time of transfer: 

  

t
trn

=
a

trn

3

µ
 (72) 

4. Evaluation of the times of the 1
st
 and the 2

nd
 thrusts. Operations described in  4.1-4.5. 

4.1. Enumeration of the possible times of the 1
st
 thrust: 

t1k = t1i + kT1, k = 2, 1,0,1,2, 3  (73) 

4.2. determination of the time of the 2
nd

 thrust: 

  
t
2k

= t
1k

+T
trn

 (74) 

4.3. Calculation of the state vector 
   
r

1k
,v

1k
( ) for the time 

  
t
1k

using initial orbit. Calculation 

of the state vector 
   
r

2k
,v

2k
( )  for the time 

  
t

2k
 using the target orbit. 

Determination of the elements of the orbit for the transfer from position 
   
r
1k

 for the time 

  
t
1k

to the position 
   
r
2k

 for the time 
  
t
2k

 using Lambert’s problem procedure. 

Calculation of the state vector 
   
r
1tk

,v
1tk( )  for the time 

  
t
1k

 and the state vector 

   
r
2tk

,v
2tk( )  for the time 

  
t
2k

 using the elements of the transfer orbit .  

Calculation of the module of the resulting impulse: 
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mk = v1k v1tk + v2k v2tk  (75) 

4.4. Selection of the k , for which we have the minimum 
 
m

k
. The times corresponding to 

 
m

k
 will be denoted as 

  
t
1m

and 
  
t
2m

. 

5. Updating of the times of the 1
st
 and the 2

nd
 thrusts 

5.1. Enumerative search for t1a  within 

  

t
1m

t
trn

4
,t

1m
+

t
trn

4
 with the step 5 minutes. 

5.2. Enumerative search for t2a  within t
2m

t
trn

4
,t

2m
+

t
trn

4
 with the step 5 minutes. 

5.3. For each pair of the values of t1a  and 
  
t

2a
 we perform the operations similar to those 

of item 4.3. We calculate the state vector for the initial orbit for the time 
  
t
1a

 and the tar-

get one – for the time 
  
t

2a
. Then solve the Lambert’s problem and determine the transfer 

impulses. Then calculate the module of resulting impulse.  

5.4. Select the pair of times 
  
t
1a

 and 
  
t
2a

, for which the minimum of resulting impulse is 

attained and generate the result. 

 

ALGORITHM FOR EVALUATION OF THE ACCELERATION AND THE TIMES OF 

THE SWITCH-ON AND CUTOFF OF THE LOW THRUST ENGINE BY TWO INITIAL 

CONDITIONS 

This section describes the algorithm for determining the time interval of the operation of the 

low thrust engine and the generated acceleration providing the transfer between the given orbits. 

Input data: 

  
t
E1

, rE1,vE1( )
T

 – time and the state vector of the initial orbit for this time; 

t
1L

,t
2L( )  – interval of possible engine switch-on; 

  
t
E2

, 
   
r

E2
,v

E2( )
T

 – time and the state vector of the target orbit for this time; 

t
1R

,t
2R( )  – 

interval of possible engine cutoff; we assume that the end of the interval of 

possible switch-on is does not exceed the beginning of the cutoff interval; 

  
h

max
 – maximum possible value of the step. 

 

Output information: 

  
t
I 1

 – estimate of the switch-on time; 

  
t
I 2

 – estimate of the cutoff time; 

Frame – sign of coordinate frame: 0 – inertial, 1 – orbital;. 

   
a = a

x
, a

y
, a

z( )
T

 – acceleration vector. 

 

Designation 
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y
S

t( ) = r
S

t( ) ,v
S

t( )( )
T

 – state vector of initial orbit for the time  t ; 

x
T

t( ) = r
T

t( ) ,v
T

t( )( )
T

 – state vector of target orbit for the time t ; 

 

Basic relationships 

The time within the interval of possible switch-on t
1L

,t
2L( ) , will be denoted as 

  
t
L, j

, and the 

time of cutoff from the interval t
1R

,t
2R( )  — interval of possible cutoff - as 

  
t
R,i

.  

For the set times of switch-on and cutoff of low thrust engines: t
L, j

,t
R,i

 we determine the ac-

celeration vector under the condition of minimum weighted residual between the state vectors: 

   
x

i
= x

T
t
R,i( )  and  

   

y
i
+ t

R,i
,( ) B( )d a

tL, j

tR,i

 (76) 

 

where 

x
i
 – state vector of the spacecraft in the target orbit for the time

  
t
R,i

; 

y
i
 – state vector of the spacecraft in the initial orbit for the time 

 
t
Ri

, 
   
y

i
= y

T
t
R,i( ) ; 

B( )  – 

matrix 6x3, describing the direction of the thrust; if the direction of the thrust 

vector is permanent in the inertial coordinate frame, the matrix 

  

B( ) =
0

E
3

; 

if the direction of the thrust is permanent in the orbital coordinate frame, 

   

B( ) =
0

e
r
,e

n
,e

b

; 

  
E

3
 – unit matrix of the 3

rd
 order 3; 

e
r
,e

n
,e

b
 – unit vectors of the directions of the axes of RNB coordinate frame; 

 a  – the sought acceleration vector; 

   

y t( )
y t

E1( )
 – 

matrix of partial derivatives of the state vector for the time t  with respect to the 

state vector for the time of initial conditions along the initial orbit. 

   

t
R,i

,( ) =
y t

R,i( )
y t

E1( )

y( )
y t

E1( )

1

– transition matrix 

The six-dimensional diagonal matrix 
  
W

g
 is used as the weighting matrix in the search of the 

minimum. Diagonal elements of this matrix are defined by the values of a priori RMS errors of 

the position and velocity components: 
 P

 and 
 V

: 
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Wg =

1

P

2
E

3
0

3

0
3

1

V

2
E

3

 (77) 

Here 
3

0  - zero matrix of the 3
rd

 order. 

In case we use TLE the values of these RMS errors are: 
  P

= 100  m/s, 
  V

= 1  m/s. 

If we denote  

   

Q
j,i
= t

R,i
,( )

tL, j

tR,i

B( )d  (78) 

the considered weighted residual is represented in shape of the following quadratic form: 

   
F = x

i
y

i
Q

j,i
a( )

T

W
g

x
i

y
i

Q
j,i

a( )  (79) 

For the fixed indexes 
  
i, j  the vector  a , for which the quadratic form (79) reaches its mini-

mum, can be found using the formula: 

   
a

min
= Q

j,i
T

W
g
Q

j,i( )
1

Q
j,i
T

W
g

x
i

y
i( )  (80) 

The respective minimum value of the quadratic form is equal to: 

   
F

min
= x

i
y

i
Q

j,i
a

min( )
T

W
g

x
i

y
i

Q
j,i

a
min( )  (81) 

The global minimum of the quadratic form (79) can be found by scanning in  i and 
 
j . For re-

duction of computation for the enumerative search we need the recursive formulas connecting 

matrices 
   
Q

j,i+1
 and 

   
Q

j 1,i
with the matrix 

   
Q

i, j
. Let us derive these formulas. Actually,  

   

Q
j,i+1

= t
R,i+1

,( )B( )
tL, j

tR,i+1

d = t
R,i+1

,t
R,i( ) t

R,i
,( )B( )

tL, j

tR,i

d +

t
i+1

,( )B( )
ti

tR, i+1

d = t
R,i+1

,t
R,i( )Q j,i

+ t
R,i+1

,( )B( )
tR,i

tR,i+1

d

 (82) 
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Q
j 1,i

= t
R,i

,( )
tL, j 1

tR,i

B( )d = t
R,i

,( )
tL, j 1

tL, j

B( )d + t
R,i

,( )
tL, j

tR,i

B( )d =

t
R,i

,t
L, j( ) t

L, j
,( )

tL, j 1

tL, j

B( )d +Q
j,i

 (83) 

Using the trapezoid formulas for approximate calculation of the integrals 

   

t
R,i+1

,( )B( )
t
R, i

t
R, i+1

d  and 

   

t
L, j

,( )
t
L, j 1

t
L, j

B( )d  yields: 

   
Q

j,i+1
t
R,i+1

,t
R,i( )Q j,i

+
t
R,i+1

t
R,i

2
B t

R,i+1( ) + t
R,i+1

,t
R,i( )B t

R,i( )  (84) 

   
Q

j 1,i

1

2
t
R i

,t
L j( ) B t

L j( ) + t
L j

,t
L j 1( )B t

L j( )( ) t
L j

t
L j 1( ) +Q

j,i
 (85) 

Sequence of the operations 

1. Select the number of fragmentations  N  of the interval t
1R

,t
2R( )  of possible engine cutoff 

under the condition: 
t
2R

t
1R

N 1
< h

max
 and calculate the value of the step for the interval of possi-

ble engine cutoff: 

  

h
R
=

t
2R

t
1R

N 1
 (86) 

2. Within the interval t
1R

,t
2R( )  using parameters of the target orbit with permanent step Rh  

calculate the table of state vectors: 

   
x

i
= x

T
t
R,i( ) , t

R,i = t
1R

+ (i 1)h
R{ } , i = 1,...N  (87) 

3. For each time t
R ,i , i = 1,..., N  using parameters of the initial orbit we calculate the matrix of 

the derivatives of the components of the state vector for the time t
R ,i  with respect to the compo-

nents of the state vector for the initial time 
  
t
E1

: 

   

Z t
R, i( ) =

y t
R, i( )

y t
1E( )

 (88) 

4. Then select the number of fragmentations  M  of the interval of possible switch-on of the en-

gine 
  
t
1L

,t
2L( )  under the condition that the step of the fragmentation  

  

h
L
=

t
2L

t
1L

M 1
 does not 

exceed h
max

. 
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5. Within the interval of possible engine switch-on 1 2( , )L Lt t  using the parameters of the initial 

orbit with permanent step 
 
h

L
 we calculate the table comprising the time 

t
L, j

= t
1L

+ ( j 1)h
L
, j = 1,..., M , state vector of the initial orbit for this time and the matrix of 

partial derivatives of the components of the state vector for the initial time 
  
t

E1
 with respect to the 

components of the state vector for the time 
  
t
L, j

 

   

t
L , j

, y
j
, Z

j
1
=

y t
L , j( )

y t
E1( )

1

=
y t

E1( )
y t

L, j( )
  

Further operation described by items 6-12 are performed for two variants of the direction of 

the thrust vector: permanent in the inertial coordinate frame and permanent in the orbital coor-

dinate frame. 

6. Calculate the matrix Q
M ,1

 by performing the following operations. If t
M ,L

= t
1R

, then matrix 

   
Q

M ,1
= 0 . If 

  
t
M ,L

< t
1R

, the interval t
M ,L

,t
1R

 is fragmented into several parts in a way that 

the length of no part exceeds  
  
h

max
 (see the procedure for selecting the step in items 1 or 3). The 

matrix 

   

Q
M ,1

= t
1R

,( )B( )
t
M L

t
1 R

d  is calculated using trapezium formula for each part. 

7. Determine the values of the following variables: 

F
c

 – current minimum value of the quadratic form, 

  
a

c
 – acceleration vector corresponding to the current minimum value of the quadratic form, 

  
i
c
, j

c
 – indices, corresponding to the current minimum value of the quadratic form. 

Initial value 
 
F

c
= +  

8. We organize two cycles. The external cycle for 
 
j  from  M  until 1. The internal cycle for i  

from 1 until  N . 

9. Prior to begin of the internal cycle we set the variable matrix Q
c
= Q

j1
. 

10. Internal cycle. Using the matrix 
  
Q

c
,  by Eqs (80) and (81) we find the acceleration vector a  

and the value of functional  F . If 
 
F < F

c
, new values are assigned to the variables 

   
F

c
,a

c
, i

c
, j

c
 . 

Using Eq. (84) and the current matrix 
   
Q

c
= Q

j,i
we calculate the new matrix 

  
Q

c
: 

   

Q
c
= Q

j,i+1
=

t
R,i+1

,t
Ri( )Q j,i

+
1

2
B t

R,i+1( ) + t
R,i+1

,t
R,i( )B t

R,i( )( ) t
R,i+1

t
R,i( )

 (89) 

11. After the completion of the internal cycle, using the recurrent formula (4.10) we calculate the 

new matrix 
  
Q

c
: 

   

Q
c
= Q

j 1,1
=

1

2
t
R1

,t
L, j( ) B t

L, j( ) + t
L, j

,t
L, j 1( )B t

L, j( )( ) t
L, j

t
L, j 1( ) +Q

j,1

 (90) 
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12. We compare the values of cF , calculated for the two variants of the direction of the thrust 

vector. Then select the minimum value and generate the result using 
  
a

c
, 

  
i
c
, j

c
. 
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